Taza Mind

A fusion of fresh thoughts and AI intelligence

Steps to Build Sentiment Analysis Model (using TextBlob or NLTK)

1. Setup Environment

  • Install required libraries: textblob, nltk.
  • Download NLTK data (if using NLTK, e.g., stopwords, tokenizer).

2. Prepare Sample Data (Customer Reviews)

  • Collect or create a small dataset of text reviews (e.g., “The product is amazing!”, “Very bad service.”).
  • Store them in a list or read from a file (CSV/JSON).

3. Preprocess Text (Optional)

  • Lowercase the text.
  • Remove special characters, numbers, stopwords.
  • Tokenize text if needed (for NLTK).

4. Sentiment Analysis with TextBlob

  • Use TextBlob(review).sentiment.polarity to get polarity score (range: -1 to 1).
    • > 0 → Positive
    • < 0 → Negative
    • = 0 → Neutral
  • Also extract subjectivity for confidence measurement.

5. Sentiment Analysis with NLTK (Optional)

  • Use VADER Sentiment Analyzer (nltk.sentiment.vader).
  • It gives polarity scores (positive, negative, neutral, compound).
  • Classify based on compound score.

6. Output Results

  • For each review, print:
    • Review text
    • Classification (Positive/Negative/Neutral)
    • Confidence score (absolute polarity value)

Related Posts

جواب دیں

آپ کا ای میل ایڈریس شائع نہیں کیا جائے گا۔ ضروری خانوں کو * سے نشان زد کیا گیا ہے